The well known Chen's conjecture on biharmonic submanifolds states that abiharmonic submanifold in a Euclidean space is a minimal one ([10-13, 16,18-21, 8]). For the case of hypersurfaces, we know that Chen's conjecture istrue for biharmonic surfaces in $\mathbb E^3$ ([10], [24]), biharmonichypersurfaces in $\mathbb E^4$ ([23]), and biharmonic hypersurfaces in $\mathbbE^m$ with at most two distinct principal curvatures ([21]). The most recentwork of Chen-Munteanu [18] shows that Chen's conjecture is true for$\delta(2)$-ideal hypersurfaces in $\mathbb E^m$, where a $\delta(2)$-idealhypersurface is a hypersurface whose principal curvatures take three specialvalues: $\lambda_1, \lambda_2$ and $\lambda_1+\lambda_2$. In this paper, weprove that Chen's conjecture is true for hypersurfaces with three distinctprincipal curvatures in $\mathbb E^m$ with arbitrary dimension, thus, extendall the above-mentioned results. As an application we also show that Chen'sconjecture is true for $O(p)\times O(q)$-invariant hypersurfaces in Euclideanspace $\mathbb E^{p+q}$.
展开▼
机译:著名的Chen关于双调和子流形的猜想指出,欧几里得空间中的双调和子流形是最小的([10-13,16,18-21,8])。对于超曲面,我们知道Chen猜想对于$ \ mathbb E ^ 3 $([10],[24])中的双谐波曲面,$ \ mathbb E ^ 4 $([23])中的双谐波超曲面是正确的。 $ \ mathbbE ^ m $中的超曲面具有最多两个不同的主曲率([21])。 Chen-Munteanu [18]的最新工作表明,对于$ \ mathbb E ^ m $中的$ \ delta(2)$理想超曲面,Chen的猜想是正确的,其中$ \ delta(2)$理想超曲面是超曲面其主曲率采用三个特殊值:$ \ lambda_1,\ lambda_2 $和$ \ lambda_1 + \ lambda_2 $。在本文中,我们证明了Chen的猜想对于具有任意维度的\ mathbb E ^ m $中具有三个不同主曲率的超曲面是正确的,因此扩展了上述所有结果。作为一个应用,我们还证明了Chen的猜想对于欧氏空间$ \ mathbb E ^ {p + q} $中的$ O(p)\乘以O(q)$不变超曲面是正确的。
展开▼